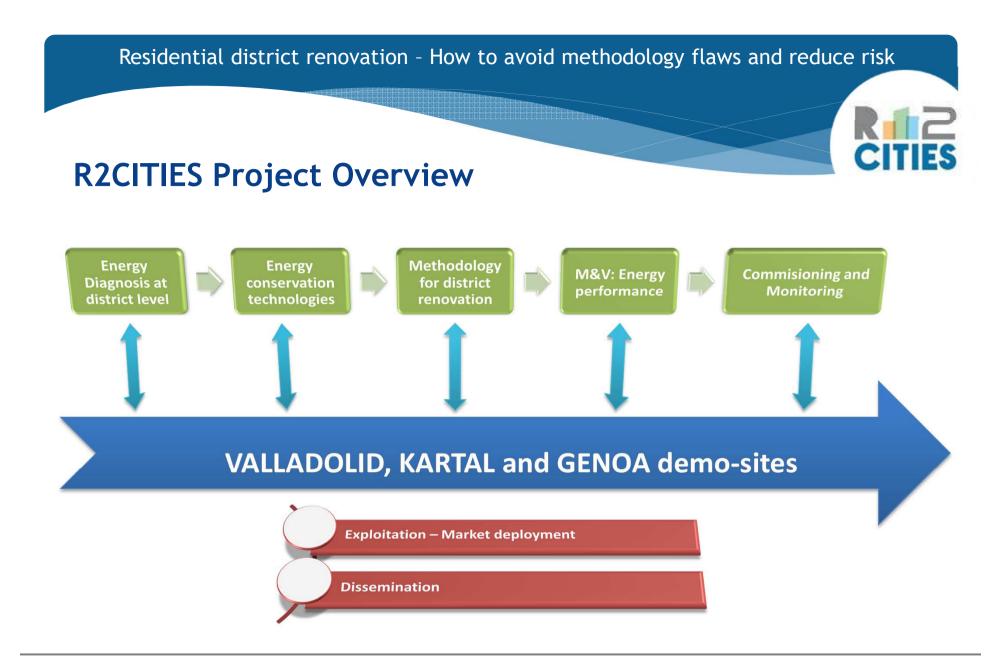


EUSEW - 19 June 2017 - 11 am

EeB.ENERGY.2012.8.8.3, grant agreement No.314473

- Discuss how to design and align a retrofitting strategy drawing on the practical experience of the R2CITIES project:
 - ✓ Integrated design methodology
 - ✓ Making it happen the Valladolid case study
 - ✓ Benefits for stakeholders

Cecilia Sanz


Brief project presentation

Start date: July 2013
Duration: 60 months
Total budget: 14.8 million EUR
EU funding: 9.1 million EUR
17 partners from 5 different EU countries
31% of project partners are SMEs

R2CITIES will develop and demonstrate replicable strategies for designing, constructing and managing large scale district renovation projects for achieving nearly zero energy cities.

The Project

Develop and demonstrate replicable strategies for designing, constructing and managing large scale district renovation projects for achieving nearly zero energy cities

Expected Impacts

57.000 m2 renovated surface area 60% reduction energy use 860 dwelling involved

GENOA

The social housing district of Lavatrici was developed during 1980-1990. The pilot is located on the west part of the city in the so called Pegli 3 District on a natural hill.

EeB.ENERGY.2012.8.8.3, grant agreement No.314473

KARTAL

The use of low efficiency lighting systems and appliances and a slim insulation means very high energy consumption for Yakacik district of Kartal, Istanbul and therefore a high potential for improving,

R2CITIES project.

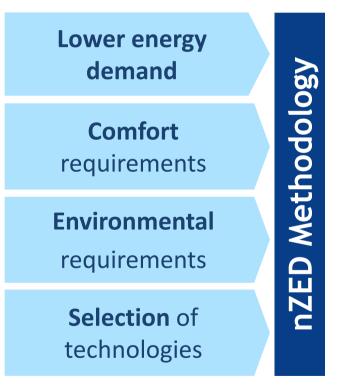
A complete retrofitting based on façade improvements. ICTs and renewable energy systems will be

implemented in the Cuatro de Marzo

district, the demo site chosen for the

SPEAKER

Javier Bonilla Diaz


Franciscojavier.bonilla.diaz@acciona.com

District energy retrofitting design methodology -Objectives

- District renovations are **complex** and require **different stakeholders** to cooperate
- Projects have to focus on cost-effective energy management and environmental sustainability but also on social and urban aspects
- Guidelines are necessary throughout the project - diagnosis, design, execution, commissioning, evaluation

District energy retrofitting design methodology Approach overview

Phasing: objectives and expected results Specific recommendation for district, considering the building types and the climatic conditions.

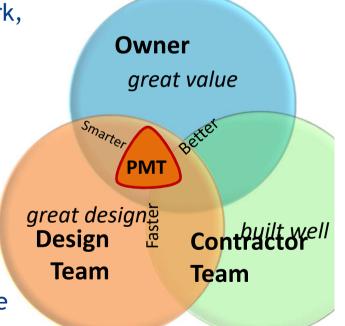
R2CITIES Methodology

V Integrated Project Delivery (IPD) +BIM

Use of IPD principles. Consider the whole value network in the construction process. Recommendations for the use of BIM and energy performance simulation.

V District Sustainability Indicators (DSI) matrix

Establishing scientific criteria for the retrofitting of European districts and cities.

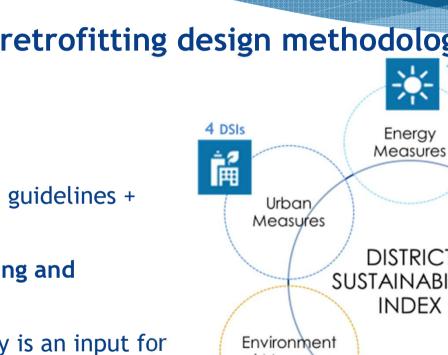

District energy retrofitting design methodology IPD and BIM

Integrated Project Delivery (IPD)®

- Contractual implications **enhance collaborative** work, stakeholders are engaged early on
- Representatives share responsabilities, risk and rewards.
- **Project Management Team (PMT)** ensures project goals are achieved

BIM

- Maximum collaborative work.
- Compatibility with LCC, LCA and Energy Performance tools.



District energy retrofitting design methodology

Residential district renovation - How to avoid methodology flaws and reduce risk

- Evaluation criteria.
- CONCERTO Premium guidelines + extra indicators
- Normalization, scaling and weighting criteria.
- Energy (EN) category is an input for the other categories.
- Designed for **diagnosis** (baseline), selection of alternatives and final assessment.

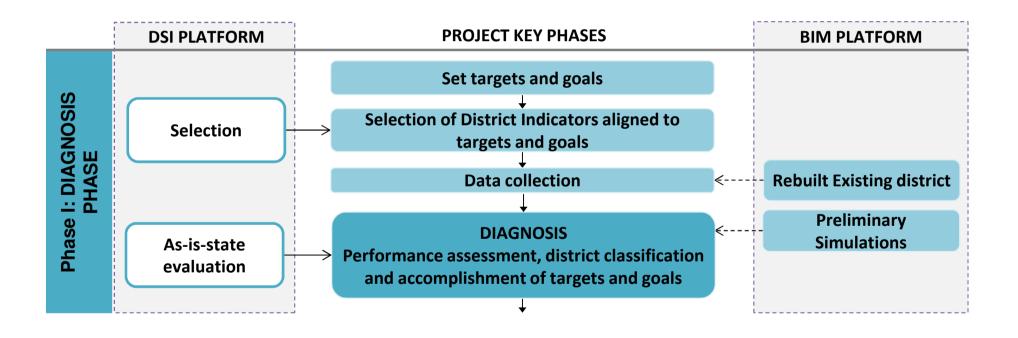
11 DSIs

111

District energy retrofitting design methodology DSI matrix

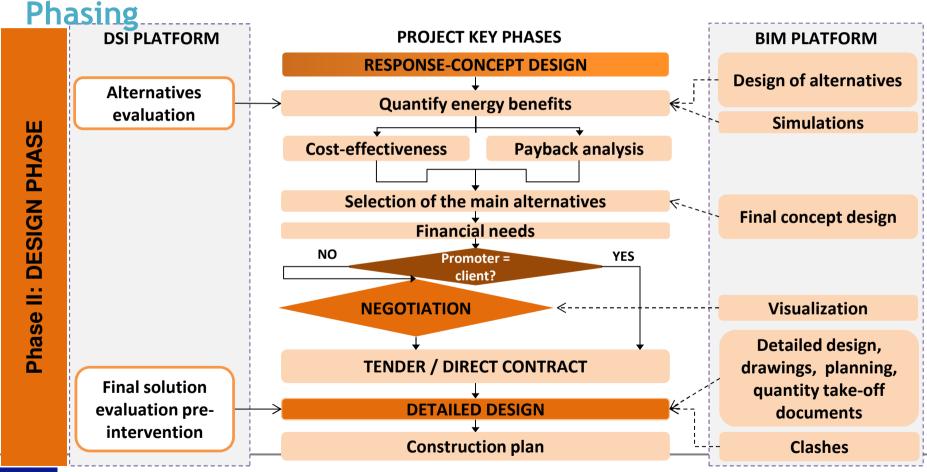
	🔆 Energy index (12)		Linite	Application Phase			
Energy index (12)		Units	Diagn.	Eval.	Assess.		
EN1	DEN Density of final energy demand or consumption		kWh/m²a	х	х	х	
EN2	Efesu	Maximum and annual/monthly efficiency of energy supply units		х	х	х	
EN8	ESS	Degree of energetic self-supply	%	х	х	х	

	Environmental index (5)		Units	Application Phase			
			Units	Diagn.	Eval.	Assess.	
ENV1	FEN	Final energy demand and consumption	kWh/m ² a	х	х	х	
ENV2	PEN	Primary energy demand and consumption	kWh/m ² a	х	х	х	
ENV3	GHG	Greenhouse gas emissions	t/m ² a	х	х	х	

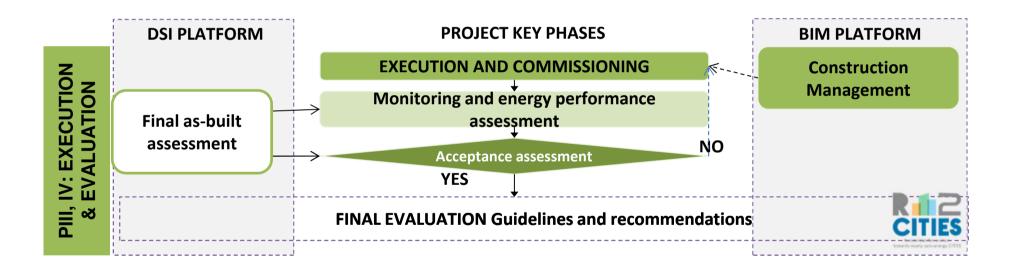

District energy retrofitting design methodology Phasing

- Step by step to ensure that the design solutions deliver on with energy efficiency, comfort, cost-effectiveness and sustainability
- Objectives and responsibilities are set for each project phase. Common risks and barriers are highlighted, while recommendations cover decision making and project documents contents.

			Phase I: Dia	agn	osis	
			Phase II: D)es	ign	
		Phase II-a: Concept Design	Phase II-b: Tendering/ bidding phase		Phase II-c: Detailed Design	
Organization	DSIs platform	Phase II-d: Imple	mentation plan o	f con	struction works	ן <u>ב</u> ן
		Phase III: Execution				
			se III-a: ng process		Phase III-b: Buyout	M pl
		Phase III-c:	Construction and	com	missioning	B
		P	hase IV: Ev	alu	ation	
		Phase IV-a: Build	ding Energy Perfo evaluation	ormar	nce assessment	
		Phase IV-b: User evalua	· · ·		Phase IV-c: Evaluation	



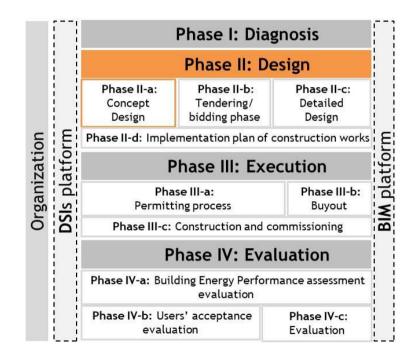
District energy retrofitting design methodology **Phasing**



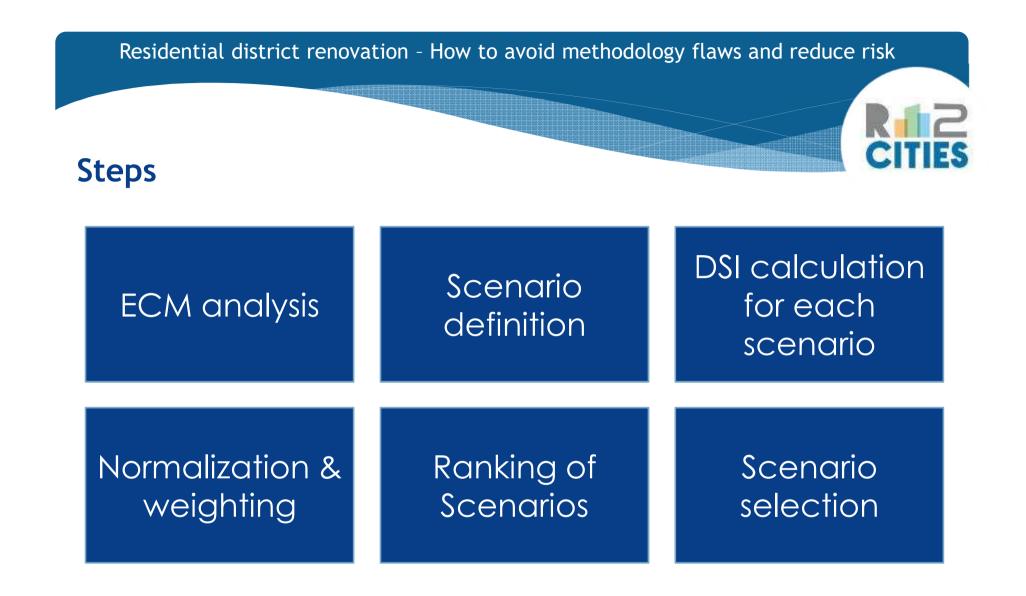
District energy retrofitting design methodology

District energy retrofitting design methodology Phasing

Cecilia Sanz



cecsan@cartif.es



VALLADOLID case study

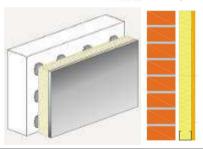
- Implementation of the Methodology in the R2CITIES demosites
- During Phase II of the Methodology (Design phase)
- For supporting the Decision Maker in the selection of retrofitting scenario

	SOLUTION	code
	Façade solution 1 ETICs solution 60mm (U ≤ 0.38 W/m²K)	ECM1
	Façade solution 2- Ventilated façade system (U \$ 0.40 W/m²K)	ECM2
	New windows or additional external windows (North: U \leq 2.60 W/m ² K; East, West and South: U \leq 2.70 W/m ² K) and Glazed enclosure of the balconies (U \leq 2.80 W/m ² K and SHGC \leq 0.73)	ECM3
	Insulation below top slab (U \leq 0.38 W/m ² K)	ECM4
	Insulation above ground slab (U \leq 0.49 W/m ² K)	ECM5
	Interior partitions between conditioned and no conditioned areas (U \leq 1.00 W/m ² K)	ECM6
	Adequate ventilation	ECM7
	Biomass boiler District Heating	ECM8
	Programmable thermostatic radiator valves	ECM9
	Efficient lighting systems	ECM10
STAGE 1	Building applied Photovoltaics (BAPV)	ECM11
STA	Solar thermal collectors	ECM12

	Façade solution 3 ETICs solution 100mm (U ≤ 0.27 W/m²K)	ECM13
	Solar thermosiphon collectors	ECM14
	Efficient condensation low-temperature boilers	ECM15
STAGE 2	PV parking lot for electric cars charging	ECM16

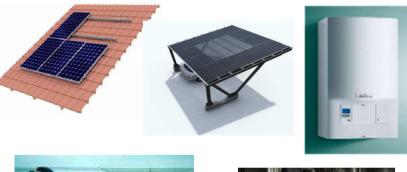
	SOLUTION	code
	Façade solution 1 ETICs solution 60mm $(U \le 0.38 \text{ W/m}^2\text{K})$	ECM1
	Façade solution 2- Ventilated façade system $(U \le 0.40 \text{ W/m}^2\text{K})$	ECM2
	New windows or additional external windows (North: U< 2.60 W/m ² K; East, West and South: U< 2.70 W/m ² K) and Glazed enclosure of the balconies (U< 2.80 W/m ² K and SHGC \leq 0.73)	ECM3
	Insulation below top slab (U \leq 0.38 W/m ² K)	ECM4
	Insulation above ground slab (U \leq 0.49 W/m ² K)	ECM5
	Interior partitions between conditioned and no conditioned areas (U \leq 1.00 W/m ² K)	ECM6
	Adequate ventilation	ECM7
	Biomass boiler District Heating	ECM8
	Programmable thermostatic radiator valves	ECM9
STAGE 1	Efficient lighting systems	ECM10
	Building applied Photovoltaics (BAPV)	ECM11
STA	Solar thermal collectors	ECM12

	Façade solution 3 ETICs solution 100mm $(U \le 0.27 \text{ W/m}^2\text{K})$	ECM13
ĺ	Solar thermosiphon collectors	ECM14
	Efficient condensation low-temperature boilers	ECM15
	PV parking lot for electric cars charging	ECM16



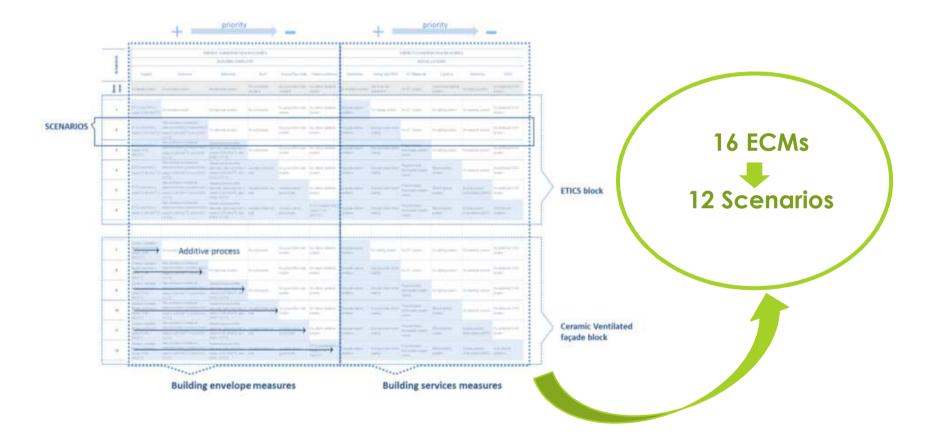
	SOLUTION	code
	Façade solution 1 ETICs solution 60mm $(U \le 0.38 \text{ W/m}^2\text{K})$	ECM1
	Façade solution 2- Ventilated façade system $(U \le 0.40 \text{ W/m}^2\text{K})$	ECM2
	New windows or additional external windows (North: U \leq 2.60 W/m ² K; East, West and South: U \leq 2.70 W/m ² K) and Glazed enclosure of the balconies (U \leq 2.80 W/m ² K and SHGC \leq 0.73)	ECM3
	Insulation below top slab (U ≤ 0.38 W/m²K)	ECM4
	Insulation above ground slab (U ≤ 0.49 W/m ² K)	ECMS
	Interior partitions between conditioned and no conditioned areas (U ≤ 1.00 W/m ² K)	ECM6
	Adequate ventilation	ECM7
	Biomass boiler District Heating	ECM8
	Programmable thermostatic radiator valves	ECM9
	Efficient lighting systems	ECM10
STAGE 1	Building applied Photovoltaics (BAPV)	ECM11
STA	Solar thermal collectors	ECM12

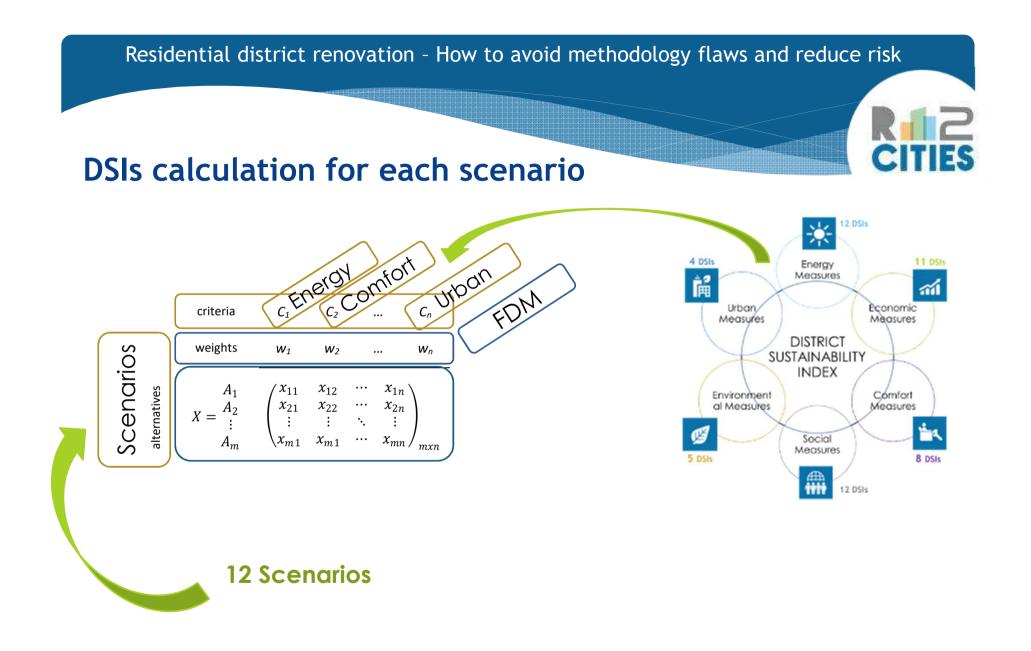
Façade solution 3 ETICs solution 100mm $(U \le 0.27 \text{ W/m}^2\text{K})$	ECM13
Solar thermosiphon collectors	ECM14
Efficient condensation low-temperature boilers	ECM15
PV parking lot for electric cars charging	ECM16

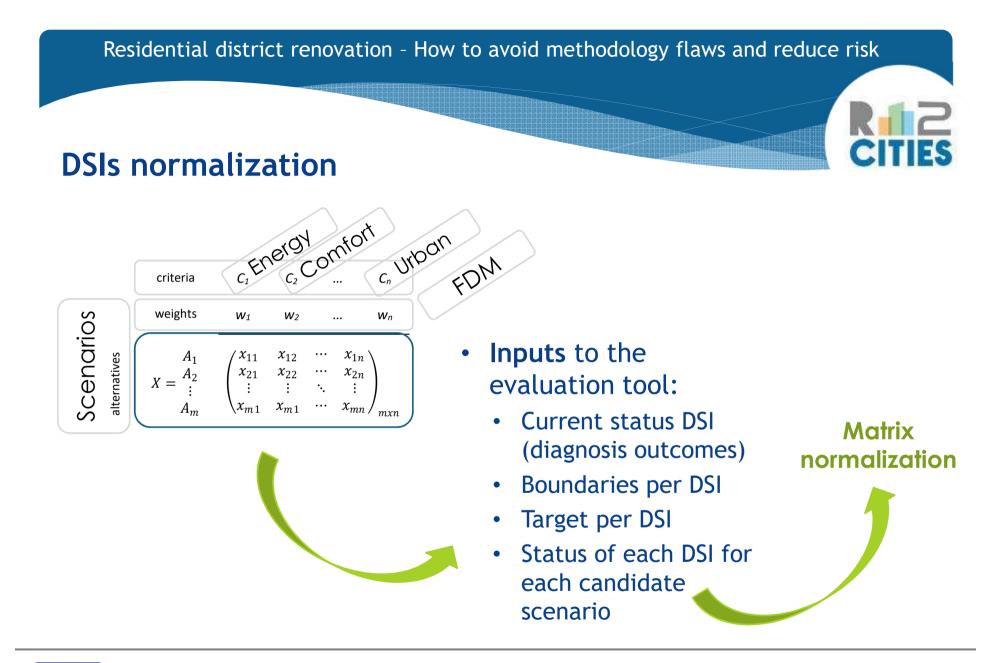


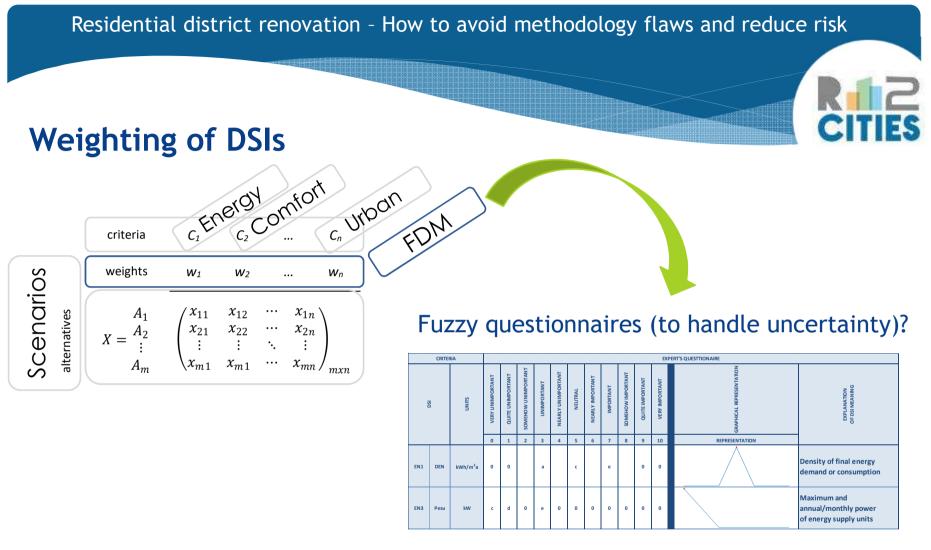
	SOLUTION	code	
	Façade solution 1 ETICs solution 60mm (U ≤ 0.38 W/m²K)	ECM1	
	Façade solution 2- Ventilated façade system (U \leq 0.40 W/m ² K)	ECM2	
	New windows or additional external windows (North: U \leq 2.60 W/m ² K; East, West and South: U \leq 2.70 W/m ² K) and Glazed enclosure of the balconies (U \leq 2.80 W/m ² K and SHGC \leq 0.73)	ECM3	
	Insulation below top slab (U ≤ 0.38 W/m²K)	ECM4	1
	Insulation above ground slab (U \leq 0.49 W/m ² K)	ECM5	
	Interior partitions between conditioned and no conditioned areas (U \leq 1.00 W/m ² K)	ECM6	
	Adequate ventilation	ECM7	
	Biomass boiler District Heating	ECM8	
	Programmable thermostatic radiator valves	ECM9	
	Efficient lighting systems	ECM10	
STAGE 1	Building applied Photovoltaics (BAPV)	ECM11	
E	Solar thermal collectors	ECM12	

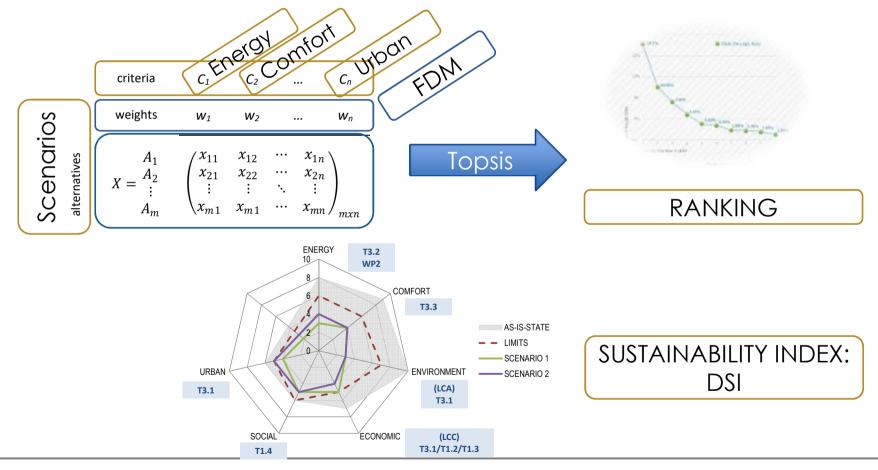
	Façade solution 3 ETICs solution 100mm $(U \le 0.27 \text{ W/m}^2\text{K})$	ECM13	
	Solar thermosiphon collectors	ECM14	
2	Efficient condensation low-temperature boilers	ECM15	
STAGE	PV parking lot for electric cars charging	ECM16	






VALLADOLID: Scenario definition




Fuzzy Delphi Method \rightarrow from opinions with uncertainty to weights

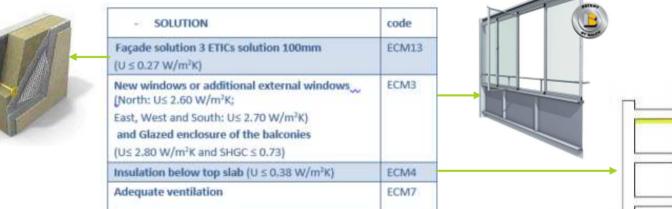
Basis of Decision Support for District Retrofitting: how does it work?

- CONCERTO PREMIUM SCIS indicators used not only in monitoring
- Part of R2CITIES METHODOLOGY [design support tool Fuzzy Delphi Method & TOPSIS approach]

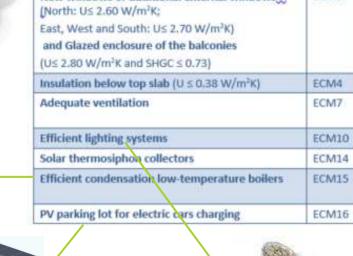
VALLADOLID: Ranking of Scenarios

				INDE	X VALUE			
SCENARIO	ENERGY	ECONOMIC	COMFORT	SOCIAL	ENVIRONMENT	URBAN	SCORE	RANKING
1	0.409	0.620	0.342	0.540	0.010	0,321	0.256	12th
2	0.455	0.563	0.323	0.541	0.619	0.396	0.573	10th
3	0.493	0.491	0.454	0.541	0.735	0.435	0.700	6th
4	0.554	0.453	0.380	0.541	0.780	0.471	0.692	6th
5	0.522	0.456	0.390	0.541	0.913	0.536	0.753	2nd
6	0.437	0.577	0.425	0.540	0.240	0.402	0.358	1.1th
7	0.472	0.508	0.399	0.541	0.671	0.453	0.647	Bth
1	0.502	0.481	0.497	0.541	0.835	0.488	0.775	1st
9	0.553	0.411	0.427	0.541	0.809	0.517	0.707	405
0	0.521	0.394	0.432	0.542	0.907	0.582	0.728	3rd
11	0.508	0.572	0.345	0.541	0.543	0.533	0.592	9th
12	0.463	0.511	0.347	0.541	0.714	0.566	0.671	7th

SCENARIO	INDEX VALUE							
	ENERGY	ECONOMIC	COMFORT	SOCIAL	ENVIRON.	URBAN	SCORE	RANKING
1	0.409	0.62	0.542	0.54	0.01	0.409	0.321	148
6	0.437	0.577	0.425	0.54	0.24	0.437	0.402	311
11	0.508	0.572	0.345	0.541	0.543	0.508	0.533	210
12	0.463	0.511	0.347	0.541	0.714	0.463	0.566	1.4


2

Ri


VALLADOLID: Description of Selected Scenario

DEMOSITES general information

GENOA

Energy efficient measures:

- Windows replacement
- Replacement of gas boilers by new condensation boilers. Variable flow pumps
- Individualization of dwellings
 (electrovalves)
- Advanced control and monitoring
- PV plant in roof (13kWp for thermal plant supply)
- In-situ laboratories (full monitoring)

KARTAL

Energy efficient measures:

- Envelope insulation
 improvement (thermal bridges
 elimination)
- Glazing replacement of all windows
- Radiant heating and cooling (low temperature)
- Renewable energies (Energy mix)
 - Solar thermal on roof
 - Heat pumps with geothermal and heat recovery
- Efficient lighting (LED)

VALLADOLID

Energy efficient measures:

- Façade retrofitting (ETICs insulation)
- Roof insulation
- Windows Replacement (doubling existing)
- Solar thermal (60% DHW)
- New Boilers (min COP: 1.0)
- PV parking lot (4.2 kWp)
- ICT (thermostats, improved control)

EeB.ENERGY.2012.8.8.3, grant agreement No.314473

Kristin Kiesow

kiesow@steinbeis-europa.de

Methodology

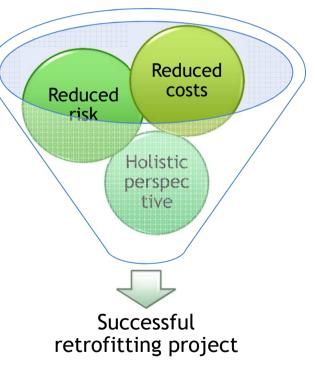
- systematically design complex renovation projects in all phases
- improve decision-making and management of large-scale retrofitting projects
- overcome technical barriers of large scale retrofitting activities
- assuring targets are reached within specified time and cost frames and desired quality

Improving your decision-making and management

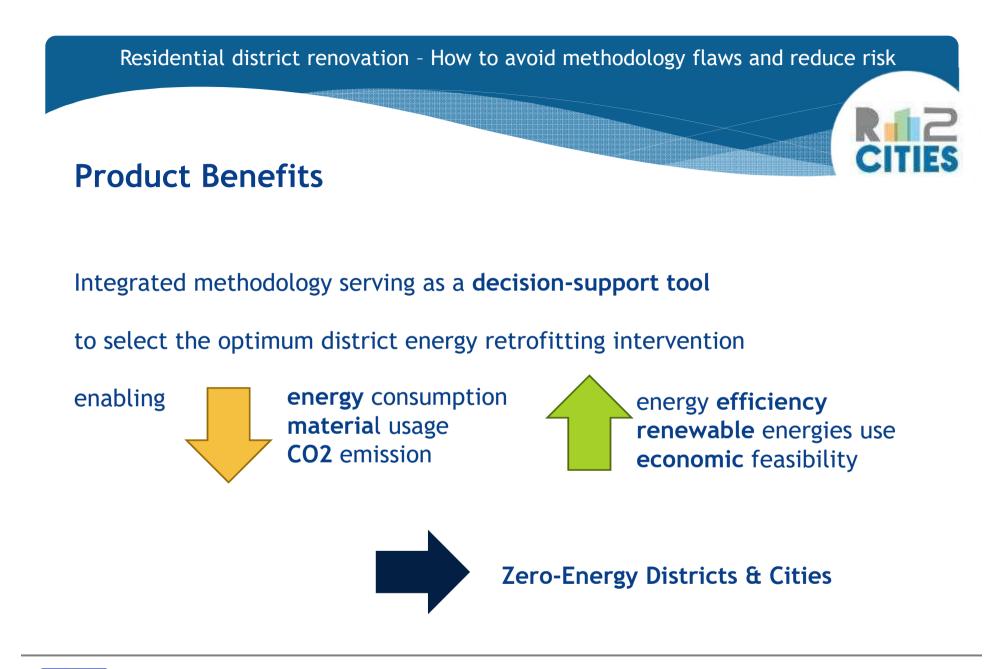
keeping your retrofitting project in the right path!

Values

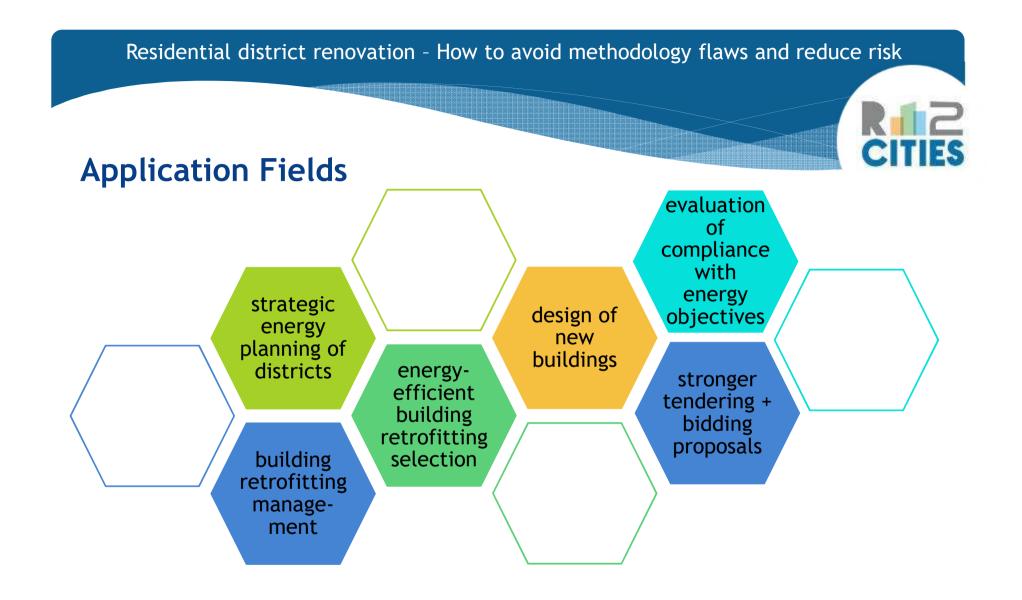
✓ Reduces costs and risks


- avoiding mistakes that occur in construction phase due to a misconceived design
- detecting system failures by constantly gathering information

\checkmark Gets the job done


- improving project management and collaboration among stakeholders
- validated on 3 different districts

\checkmark It is holistic


 ensures covering many aspects: energy, economic, sustainability, comfort, social, urban

- ✓ obtain tools to plan and implement large scale urban retrofitting projects
- ✓ perform **district analysis** prior to the interventions
- improve decision-making in building energy retrofitting considering various factors (costs, consumption, emissions, RES, comfort)
- *assure energy performance* after retrofitting interventions in order to fulfil energy efficiency obligations
- \checkmark organize workflow in a multi-stakeholder project team
- ✓ enhance involvement of various stakeholders

How Building Construction Companies Benefit

- ✓ **reduce risks** in conducting large-scale renovation projects
- ✓ assure energy performance after retrofitting interventions
- reduce personal costs due to time savings particularly in the design and decision-making process
- improve organizational tasks and communication workflows before/during/after an intervention
- ✓ attract further customers

Product Offers

Consulting Service

identify optimum energy efficiency retrofitting interventions

review procurement methods

set goals and KPIs

If you are interested please contact:

- Cecilia Sanz Montalvillo
- cecsan@cartif.es
- Javier Bonilla
- franciscojavier.bonilla.diaz@acciona.com

Software Tool

evaluate results of different interventions under a common method

assign project responsibilities and track results

assure quality for in-house projects

include the methodology as part of other training program